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Self-Regulating Shear Flow Turbulence: A Paradigm for the L to H Transition
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A self-consistent model of the L to H transition is derived from coupled nonlinear envelope equations
for the fluctuation level and radial electric field shear E;. These equations exhibit a supercritical bifur-
cation between dual L-mode and H-mode fixed points. The transition occurs when the turbulence level
is large enough for the Reynolds stress drive to overcome the damping of the ExB flow. This defines a
power threshold for the transition, which is calculated and found to be consistent with experimental

findings.

PACS numbers: 52.55.Hc

Auxiliary heated tokamak experiments in the L-mode
confinement regime reveal a degradation of confinement
with increasing power. In this confinement mode, the en-
ergy confinement time decreases as the square root of the
power input and increases linearly with the plasma cur-
rent [1]. In 1982, the H mode was observed in the AS-
DEX tokamak [2], and has since been reproduced in all
significant tokamaks and stellarators. The H-mode
confinement regime is characterized by an increased fac-
tor of 2 to 3 in the confinement time, a decrease of the
plasma edge fluctuations, and the formation of a trans-
port barrier at the plasma edge (2 to 4 cm from the
limiter/separatrix) with plasma density n developing a
steep gradient in this region. The transition from the L to
H mode is rapid (less than 2 msec) and happens for input
powers above a threshold Py,. This threshold scales as
Py Brn, where Br is the toroidal magnetic field [3].
The transition seems to be independent of heating method
and magnetic field geometry [4].

The transport barrier is due to the formation of an
edge E, layer. The region of strong shear correlates well
with the steep density gradient region and the fluctuation
suppression [5]. The L to H transition and the E; layer
formation are accompanied by the onset of an average
poloidal flow in the edge layer. Experimentally, it has not
yet been possible to determine the causal relation of the
E; layer formation and the onset of the L to H transition.

An even higher confinement mode, the VH mode [6],
was discovered recently in the DIII-D tokamak. Improv-
ing the wall conditioning with boronization depresses the
edge density and radially broadens the good confinement
region up to 60% of the minor radius. It is quite likely
that the VH mode regime is a natural extension of the L
to H transition. The discovery of the VH mode is of spe-
cial significance since it suggests a link of fluctuations
and transport dynamics to the improved confinement
transition which cannot be described only by orbit loss

mechanisms operative within pg of the edge.

There are several theoretical models for the L to H
transition based on sheared electric field effects on tur-
bulence, all based on the enhanced eddy decorrelation in-
duced by the shear electric field with the consequent tur-
bulence suppression [7]. After the causal relation be-
tween the radial electric field and the L to H transition
was first suggested [8], it was followed by more detailed
models [9,10] based on a two step process: (1) At a cer-
tain level of injected power in a tokamak, the edge parti-
cle losses or poloidal asymmetry create or modify the ra-
dial electric field and (2) this electric field is then respon-
sible for the reduction of the fluctuation level and trans-
port. However, since it has been shown that turbulence
can modify the profile of average flows through Reynolds
stress [11,12], the electric field profile and turbulence
must be calculated self-consistently.

Here, we present a bifurcation theory model for the L
to H transition, the basic components of which are ad-
dressed elsewhere [7,13]. We propose a self-consistent
model of the transition derived from coupled nonlinear
envelope equations for the fluctuation level and E,. A
broad class of detailed turbulence models (parallel flow
gradient drive, drift wave turbulence, resistive inter-
change, etc.) can be simplified to such an envelope equa-
tion form. We approach this goal by examining the evo-
lution of E, and the mean square fluctuation for a single
helicity system. Note that the radial scale of such a sys-
tem corresponds to the width of a standard H-mode shear
layer (1 to 2 cm). The model derived here is a paradigm.

First, let us consider the fluctuation evolution equation.
The nonlinear growth rate in the presence of E; is the re-
sult of balancing the linear drive yo with the damping
caused by the nonlinear coupling to other helicities and
the E, fluctuation suppression effect. The effect of the
energy leakage to other helicities can be represented by
an amplitude dependent diffusivity, Dy =p2c2 X i ke*|fix/
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nol Tk —, where ¢; =~/Teo/m; is the speed of sound,
ps =c¢5/Q; is the sound Larmor radius, kg is the poloidal
wave number, and 'y -, is the effective correlation time.
The resulting damping rate is — Di/WZ, with Wy the ra-
dial width of the instability. An average shear flow intro-
duces a symmetry-breaking term, kgVgx (odd parity in
relation to the resonance surface position) into the
dynamical equations. Since the equations are invariant
under the transformation x— —x, Vg— — Vg, the
damping must be a function of V. The characteristic
symmetry-breaking parameter is Q=koVgWy/y0; there-
fore, the flow shear damping rate is proportional to
— 702 The proportionality coefficient depends on the
particular instability. Therefore, the nonlinear growth
rate has the general form ynL=7y0—Di/WZE— 1002
Defining the density fluctuation level E=|fy/ng|?, the
equation for the fluctuation evolution is

%‘fi—f=yoE—a|E2—a2UE, m
where U=(VE)?, and the angular brackets, (), indicate
the poloidal and toroidal angle average over a magnetic
flux surface. For different turbulence models, the coeffi-
cients a; and a, are given in Table I.

The average poloidal flow profile can be modified by
the plasma turbulence via the Reynolds stress [11,12].
This mechanism has been invoked to explain the differ-
ential rotation of the solar atmosphere [14]. The poloidal
flow profile evolution equation is derived by taking the
flux surface average of the momentum balance equation:

Ve 9 (oo
a1 ol R

(é,-éo) —#<V9). (2)

The first term in the right hand side (rhs) is the Reynolds
stress and the second term is the damping caused by mag-

TABLE 1. Coefficients of Egs. (1) and (3) for different tur-
bulence models.

Parallel flow Resistive Drift
gradient driven interchange thermal
instability instability instability
a yopicd képic? 0
wilvil? YoWgA*
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netic pumping. For the Reynolds stress to have a nonzero
contribution requires radial wave propagation and the ra-
dial inhomogeneity of the turbulence, i.e., via (V) tilting
the eddies [15]. The nonuniformity of the turbulence re-
sults from edge effects and from the presence of low ra-
tional surfaces [16]. From the ion momentum balance
equation, the average poloidal flow is directly related to
the E,, E,/B=— (Vg + (pscs/P;)(dP;/dr). For simplici-
ty, and since inhomogeneities in the wave energy flux in-
duce the smallest scale variation in E; [11,12] via Rey-
nolds stress effects on (V)', we neglect the ion pressure.
The effect of this term has been included in a more de-
tailed model of drift wave turbulence bifurcation dynam-
ics [17].

Taking the radial derivatives of Eq. (2), it becomes the
evolution equation for (Vg). To close the system of equa-
tions, we have to evaluate 9%V, V,)/dr? in terms of the
density fluctuations. This term is quadratic in the fluc-
tuations, and hence proportional to E. It contains the
factor c2p? because of the normalization. It is also pro-
portional to the symmetry-breaking term Q (zero in
the symmetric limit), and to —kg/W?> because of the
four derivatives involved. Therefore, XV, Ve)/dr2
=~ —kocip?QE/W?3. After multiplying the whole equa-
tion by (V£), Eq. (2) becomes (note U ={(Vg)'?)

—;‘-idl[i=—uU+a3UE. 3)
The coefficient a3 is given in Table I. The three a co-
efficients are not independent; conservation of energy re-
quires a> =a3;W*/c2p?. Equation (3) shows that the radi-
al symmetry-breaking effect induced by (Vg) leads to an
amplification of the flow shear. This is a dynamo type in-
stability, and is similar to the anisotropic kinetic alpha in-
stability [18]. The first term in the rhs is the magnetic
pumping damping term. Note that energy conservation is
explicitly accounted for in that turbulence energy lost by
E; damping is converted to Vg drive via the Reynolds
stress. The net effect of this is to “‘channel” input energy
between an E, branch and a fluctuation branch.

Equations (1) and (3) constitute the paradigmatic
model for the L to H transition. They are similar to the
Verhulst population model [19]. The flow shear is analo-
gous to the predator species and the fluctuation level to
the prey species. By conveniently normalizing the time,
fluctuation level, and shear flow (r =yot, E=a\E/yo, and
U=Uua,), one can show that the model depends only on
two dimensionless parameters, a =a3/a; and b =pu/yo. In
discussing this model, the instability growth rate yo will
be used as a control parameter. Apart from the trivial
equilibrium solution E =U =0, Egs. (1) and (4) have two
fixed points: (1) E =yo/a; and U=0 and (2) £ =u/as,
U=(yo—ayu/a3)/a;. The first, L-mode type, is stable
for yo < ayu/a3z and the second, H-mode type, is stable
for y0> a;u/as. The transition from L to H happens
when the instability drive is large enough so that
yo=au/as. At that point, the L-mode root goes unsta-
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ble, allowing transition to the H regime. From the fixed
point solution, it is clear that for yo < aju/as, all instabil-
ity free energy goes into fluctuations and the flow damp-
ing is strong enough to avoid any flow generation. In
contrast, for yo> a u/a3, most of the instability free en-
ergy goes to build up the poloidal flow and the fluctuation
level is low, thus reconciling decreased fluctuation levels
with increased free energy input, yo. In the second case,
although the free energy available is larger than for the
first fixed point, the fluctuation level is lower. Note also
that in the H-mode type solution, the fluctuation level is
controlled by u while the shear flow is controlled by yo.
This is contrary to standard intuition, where E ~ y9. No-
tice, therefore, that the H mode is a marginal state to a
flow shear dynamo instability. In this state, E; can adjust
easily to maintain nonlinear saturation of fluctuations in
the presence of increased yp. Also, U =(V§)?, the second
fixed point corresponds to two physical solutions, each
with a different sign for the flow. In this model, each of
these solutions has equal probability for being accessed,
albeit with other effects such as VP; and orbit loss that
may seed the E, <O solution. Finally, we remind the
reader that here “fixed points” are fixed relative to slow,
transport time scales.

In Fig. 1, we have plotted the solution of Egs. (1) and
(3) for b=1, and for four different values of-a. For
a=0.5 [Fig. 1(a)], the fluctuation grows to the L-mode
saturation level, E =1, and no flow is generated. By in-
creasing a to 1.3 [Fig. 1(b)], the instability saturates first
at the L-mode level while later on there is a smooth tran-
sition to the H mode, with generation of flow. For higher
values of a, the transition is not a smooth decay but has
an oscillating component. This oscillating component in-
creases with increasing a in such a way that, for a>>b,
the solution does not go through an L-mode phase but
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FIG. 1. Time evolution of E (continuous line) and U (broken
line) for 5=1 and (a) a =0.5 and (b) a=1.3.

goes directly to the H mode via strong relaxation oscilla-
tions.

The transition condition, yo> aju/as, implies that the
net energy input rate exceeds the flow damping rate, al-
lowing energy storage in the shear flow. This translates
to a power threshold for the H-mode confinement. For a
generic drift the wave model, the growth rate is propor-
tional to the temperature gradient, yo= kep,c;(VT/T).
Using the power balance at the plasma edge, the temper-
ature gradient can be directly related to the power input
density, VT'/T ~aP;,/nTy, where y is the edge perpendic-
ular heat diffusivity. The bifurcation condition leads
to the power threshold Py,~unT(aR/a3)vT/M. For
generic drift wave-type turbulence a3;=c,/L;, so P
= (unT)eggeaRLs. Here (unT)egqe is to be evaluated us-
ing L-mode parameters, just prior to transition (i.e., p
should be evaluated for plateau on Pfirsch-Schluter con-
ditions). Note that Py, scales (unfavorably) with surface
area and with density. Also, taking T~ By (also valid
for generic drift wave models) yields a scaling in accord
with many experiments. It should also be noted that a re-
lated exercise of identifying a “dimensionless parameter”
for the L— H transition yields p=Wr;/Lyu)(L,/L;)
X (w/L,)*~TZ3/n, also in accord with experimental
findings. The ratio between the H- and L-mode fluctua-
tion levels, b/a=au/a3yo, depends on the dynamical
model of turbulence. The confinement improvement fac-
tor H is directly related to the b/a ratio, H="(au/
a3yo)”, with v=14 for strong turbulence. This factor is
far from constant. Naturally H is the local edge factor
and does not necessarily give the overall confinement im-
provement. Note also that the model predicts a modest
drop in fluctuation levels rather than total suppression.

Equations (1) and (3) satisfy the Kolmogorov theorem;
therefore, their solutions are either a stable focus or a
nonlinearly stable limit cycle. A local stability analysis
can be performed by linearizing the model equations
around the two fixed points. There are two roots to the
stability equation; one is associated with the fluctuation
and the other with the flow. For the L-mode state, the
two roots correspond to damped modes, with decay rates
y=—(u—asyo/a;) and y=—1y. For the H-mode state
and away from the critical point, the modes are oscillato-
ry and damped. In the neighborhood of the critical point
[Fig. 1(b)], the modes have zero frequency, and the
damping rate is low for the flow and high for the fluctua-
tions. Therefore, the transition is smooth near the critical
point and consistent with the smooth, supercritical bifur-
cation characteristic of the “dithering mode.” Since the
basic instability rates are different for the two fixed
points, there is a symmetry between the L to H and the H
to L transitions. The solutions of Egs. (1) and (3) are
shown in Fig. 2 for a case in which b has been changed
abruptly. For this solution, b has been decreased from
b=1.7 to b=0.6 at 1t =50 and decreased back to its ini-
tial value at t =150. In this way, both transitions have
been triggered in the calculation. We can see that the L
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FIG. 2. Time evolution of E (continuous line) and U (broken
line). Att=0, b=1.7 and a =1; in the shaded region, the con-
stant b has been increased to 0.6 to trigger the transitions.

to H transition is slower than the corresponding one from
H to L. The transition time from L to H is

7, = ajInl(yoa3s — aypu) /a3l /(asyo— nay) ,

and is singular at the critical power.

Since in the neighborhood of the critical point the
damping rate for the flow is low and for the fluctuations
high, we can assume that the fluctuations are slaved to
the flow so that the dynamical model can be reduced to a
single equation by averaging over fast fluctuation modes.
This equation is equivalent to the Landau model for a
second-order phase transition. We can use this model to
understand what effect an external torque has on the flow
parameter near the transition point. The mean flow shear
equation with an external torque is

d\vg)
dt

The susceptibility of the shear flow to an external torque
can be calculated from Eq. (4). In the L-mode phase,
OVENITL) =(u—a3yo/a)) ~', and in the H-mode
phase (V)T ) =+ (azyo/ay—u) ~'. The linear
susceptibility exhibits a divergence and discontinuity at
the transition. If the external torque is large enough to
exceed the self-generated shear, it can drive the H-mode
phase. The critical value required is Téx = 7 |asyo/a;
—u|**/(azaz/a;) 2. Thus, deep in the L mode, unrealis-
tic torques may be required to affect the shear. Near the
transition, the state rapidly transits to a saturated regime
where E/! @ (T )" due to nonlinear response effects.
The results of the model presented here suggest that
the L to H transition is a second-order phase transition
[20]. The poloidal flow gradient is the order parameter.
The L mode, characterized by randomly distributed tur-
bulent eddies, is the disordered state. The H mode,
characterized by the global shear flow dominating over
random convection, is the ordered state. Because the
model depends on the square of the shear flow, there is
equal probability of a steady state with either sign for the

=(a3yo/a; —p)VE) —asar/a\VE + Thy . (4)
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shear flow. Therefore, whatever sign is chosen implies a
spontaneous symmetry-breaking effect. Since yo is the
control parameter, it plays the role of the temperature in
a phase transition, and a)u/a; is the analog of the critical
temperature. Finally, it should be mentioned that a sub-
critical bifurcation is also a possible route to the L to H
transition, the signature of which would be an abrupt
discontinuity in order parameter at the threshold. Thus,
slowly ramped power scans crossing P are necessary to
experimentally elucidate the transition mechanism.
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